Medication for the management of spasticity in seating

Dr. Alison Hatfield, Consultant in Rehabilitation Medicine, St.Mary's Hospital, Portsmouth

Introduction

- What is spasticity?
- Why is spasticity important?
- Approaches to spasticity management
- Oral medication
- Botulinum toxin
- Invasive treatments
- Conclusions

What is spasticity?

'Spasticity is a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex as one component of the upper motor neurone syndrome'

Lance 1980

Who gets spasticity?

- Occurs in conditions where there has been an upper motor neuron lesion
- Multiple sclerosis
- Cerebral palsy
- Traumatic brain injury
- Stroke
- Spinal cord injury

Evolution of spasticity after injury

- Disruption of descending pathways
- Muscle flaccidity
- In acute care- patients lie immobile with muscle groups often in shortened position for long periods of time.
- Subacute- at several weeks plastic neural reaarangements, sprouting of fibres, emergence of abnormal excessive reflex responses to peripheral inputs

What effects does spasticity have on seating?

Seating and spasticity

- Reduced stability and difficulty seating
- Pressure ulcers
- Pain
- Spasms
- Contracture development

What problems can spasticity cause in fitting a wheelchair?

- Sliding out of their wheelchair- posterior tilted pelvis, tight hamstrings, knees flexed
- Tight hip adduction or windsweeping
- Spasms of feet, difficulty reaching the footplates
- Getting in & out of the wheelchair, standing transfers or hoist
- Spasticity may vary so one set up might not solve the variable nature of their posture

Should we treat spasticity?

- Severity
- Impact on activities of daily living
- Pain
- Relation to position- suitability of equipment
- But it can aid transfers and walking in patients with severe lower limb weakness
- And it can aid grip in an otherwise paralysed upper limb

Treatment for spasticity

- Multidiscplinary
- Patient and carers
- Nursing and medical
- Physiotherapy
- Occupational therapy
- Wheelchair service team
- Orthotist

Review of medical problems

- Underlying condition, general medical illness
- Bladder- Urinary tract abnormalities
- Bowels- Constipation
- Skin- Pressure sores, nail fold infections
- DVT
- Heterotopic ossification
- Pain

Medical treatments for spasticity

- Oral medication
- Intramuscular botulinum toxin
- Intrathecal pumps
- Phenol
- Ablative surgery

Oral treatment

- Antispasticity agents: baclofen, tizanidine, dantrolene
- Analgesics
- Anticonvulsants

Baclofen

- Agonist of the inhibitory neurotransmitter GABA
- Originally used as an anticonvulsant- anti seizure activity low but found to be effective on spasticity
- Acts at the level of the spinal cord to inhibit calcium intake which impedes release of excitatory neurotransmitters

Baclofen dosing

- After oral dose peak level at 2-3 hours, half life 3-4 hours
- Initial dose of 2.5-10mg per day maintenance of 20-90mg per day in three divided doses; doseage needed often increases over months

Tizanidine

- Derivative of clonidine
- Acts centrally as an alpha- 2 adrenergic agent to modulate the release of excitatory neurotransmitters
- Half life 2-3 hours
- Shown to reduce the spasticity in adults with SCI and MS

Doses of Tizanidine...

- Given in doses of 4-8mg per day up to 8-24 mg per day
- Side effects sedation (40-50% of individuals), dizziness, dry mouth, hypertension, liver damage

Dantrolene

- Acts on the muscle
- Decreases the force of muscle contraction
- Studies in children with CP reduction in strength, spasticity lowered, mild or no functional improvement
- Drowsiness less common than with baclofen but still in 25% of children with significant medication to effect their spasticity
- Fatigue, weakness, vomiting, diarrhoea, hepatotoxicity (less than in adults)

Diazepam

- Benzodiazepine ?facilitates GABA-A receptor neuronally mediated inhibition
- These receptors are located throughout the Central nervous system
- Lethargy more evident than effects on spasticity
- Variation in responsiveness, some intolerable sedation at low doses

Administration of Diazepam

- Start 0.1-0.2mg per kg per day working up to a max of 0.8mg per kg per day in 2-3 divided doses
- Can be given orally, buccally, nasally, rectally, IM or IV
- Dependence risk

Other oral medication

- Gabapentin, Pre- gabalin
- Carbamazepine, Vigabatrin
- Clonidine, Orphenadrine
- Clonazepam
- Magnesium

Cannabinoids

Spasticity or contracture?

- 50 year old female progressive multiple sclerosis
- Dysphagia, low body weight, pressure ulcer over her ischial tuberosity
- Dysarthria, variable ability to indicate yes/no
- Loss of range of movement at hips and knees
- ? Will need leg amputation as foot stuck under ischial tuberosity
- Pain
- Unable to seat, difficulty managing position in bed

What did we do?

- Admission to rehabilitation unit
- MDT assessment
- Review of range of movement/ spasticity versus contracture over several days
- Review nutrition-? Mental capacity, PEG tube inserted
- Trial of baclofen, analgesia for pain
- Review of equipment and care package
- Some spasticity reduced by improvement in general medical condition; Significant underlying contracture
- Has not needed amputation, sits for short periods up to 2 hours. Modular seating system used occasionally.
- Does not like hoist and being transferred out of bed.

LESS WRINKLES IN ONLY MINUTES

 83% saw less wrinkles & fine lines*

www.dermitage.com
* Home-use study of 270

Botulinum toxin: History

- Protein produced by the anaerobic bacterium Clostridium botulinum
- Earliest reports of botulism from the Roman Empire
- First accurate description by Justinus Kerner 1817

Sources of infection

One of the most common culprits in foodborne botulism is home-canned food, especially vegetables such as asparagus, green beans, and peppers.

Uses of botulinum toxin

- 1920s first concentrated into a relatively pure form
- 1940-1970s attempts to develop for biological warfare
- 1970s strabismus in primates
- 1980s stabismus, dystonias, hemifacial spasm in humans
- 1989 spasticity

Botulinum toxin action

- Only works on the motor system
- No dysaesthesia
- Attaches to the presynaptic neurone
- Inhibits release of Acetylcholine
- Prevents depolarization
- Reversible

Botulinum toxin A

- Most potent serotype
- Very avidly binds in the muscle
- 2 different preparations available:
- Dysport produced by Ipsen
- Botox produced by Allergan

Botulinum toxin: side effects

- Very well tolerated
- Weakening of injected muscle
- Diffusion into adjacent muscles
- Dysphagia
- Localized autonomic failure

Why use botulinum toxin instead of tablets?

Botulinum toxin: patient selection

- Focal spasticity
- Physiotherapy assessment
- Goals of treatment and patient consent
- Define muscles to inject
- Dose per muscle

Hip adductor spasticity

- 40 year old female progressive multiple sclerosis
- Dysarthria, cognitive impairment
- Enjoys sitting out in group sessions, going out on trips with her mother
- Positioning in wheelchair and carrying out personal care increasingly difficult because of spasticity and contractures

Intrathecal treatment

- Began in 1960s with use of intrathecal phenol to ablate spasticity and painful muscle spasms of lower extremities in patients with SCI or MS
- Intrathecal phenol also ablates bladder function
- ITB began in Europe in 1985, baclofen was injected into the spinal fluid of a 4 year old child with severe spasticity secondary to near drowning

Other local treatments

- Phenol
- Lignocaine
- Ethanol

Other treatments

- Intrathecal phenol
- Ablative surgery- the last option as irreversible- selective lesions in the nerve roots to reduce neural input and reduce flexor and stretch reflexes
- Neural stimulation

A case of severe spasticity

- 32 year old female, single parent of 2 children
- Spinal cord injury road traffic accident complete
 T6 injury
- Knees flex, hips flex
- Thrown out of w/c by spasms
- Pressure sore on foot, backache
- Baclofen, dantrolene- too sedating
- Baclofen pump- eroded thro' skin

What can we do next?

Treatment

- Iliopsoas injection botulinum toxin under ultrasound guidance
- Tenotomies
- Retrial of baclofen pump
- Management of wounds
- Nutrition, smoking advice
- Positioning

New developments spasticity management.

- Botulinum toxin and electrical stimulation- to enhance the effect of botulinum toxin on upper limb spasticity after stroke
- Electrostimulation

Conclusions.

- Spasticity can sometimes be useful but can interfere with a range of activities which include the ability to sit comfortably
- There are a range of medical treatments which need to be tailored to the individual's needs
- Treat exacerbating factors
- Use the least invasive treatment first
- Involve the multidisciplinary team

Thank you

